|
|||||||
Helen Pearson, Nature, vol 441, 25 May 2006, 399-401 |
Traduction personnelle non garantie
exempte de contresens (merci à deux lecteurs...
n'hésitez-pas) |
||||||
L'idée de gènes enfilés comme des perles sur un segment d'ADN s'estompe rapidement. Les séquences codantes des protéines n'ont ni début ni fin clairs, et l'ARN est un élément clé du stockage de l'information, rapporte Helen Pearson.
|
Nouvelles texte original en vert ci-dessous
The idea of genes as beads on a DNA string is fast fading.
Protein-coding sequences have no clear beginning or end and
RNA is a key part of the information package, reports Helen
Pearson.
|
||||||
|
|||||||
'Gène' n'est pas un mot en quatre
lettres parmi d'autres. Ce n'est pas une insulte. Il n'est
jamais bipé lors des shows
télévisés. Et, alors que le sens de la
plupart des mots de quatre lettres est on ne peut plus
clair, celui de gène n'est l'est pas du tout. S'il
est une chose sûre c'est que plus les scientifiques
deviennent experts en génétique
moléculaire, moins on est certain de savoir ce qu'est
véritablement un gène. |
En génétique classique un
gène était un concept abstrait - une
unité héréditaire qui portait les
caractéristiques d'un parent chez un enfant
(c'est ce que j'ai
nommé dans mon cours un gène
héréditaire).
Lorsque la biochimie s'en est mêlée, ces
caractères furent associés à des
enzymes ou des protéines pour chaque gène. Et
avec l'avènement de la biologie moléculaire
ces gènes devinrent réels, des
éléments physiques - des séquences
d'ADN qui, lorsqu'elles étaient convertis en brins de
ce que l'on appelle l'ARN messager, pouvaient être
utilisés pour construire des protéines qui
leurs étaient associées, morceau par morceau.
Les molécules d'ADN superenroulées du
chromosomes furent considérées comme de longs
filaments où les gènes s'enfilaient comme des
perles.
(pour un
historique de cette conception voir cours
de 1ère S du gène héréditaire au
gène
moléculaire). |
'Gene' is not a typical four-letter word. It is not offensive. It is never bleeped out of TV shows. And where the meaning of most fourletter words is all too clear, that of gene is not. The more expert scientists become in molecular genetics, the less easy it is to be sure about what, if anything, a gene actually is. Rick Young, a geneticist at the Whitehead Institute in Cambridge, Massachusetts, says that when he first started teaching as a young professor two decades ago, it took him about two hours to teach fresh-faced undergraduates what a gene was and the nuts and bolts of how it worked. Today, he and his colleagues need three months of lectures to convey the concept of the gene, and that's not because the students are any less bright. "It takes a whole semester to teach this stuff to talented graduates," Young says. "It used to be we could give a one-off definition and now it's much more complicated." In classical genetics, a gene was an abstract concept - a unit of inheritance that ferried a characteristic from parent to child. As biochemistry came into its own, those characteristics were associated with enzymes or proteins, one for each gene. And with the advent of molecular biology, genes became real, physical things - sequences of DNA which when converted into strands of so-called messenger RNA could be used as the basis for building their associated protein piece by piece. The great coiled DNA molecules of the chromosomes were seen as long strings on which gene sequences sat like discrete beads. This picture is still the working model for many scientists. But those at the forefront of genetic research see it as increasingly old-fashioned - a crude approximation that, at best, hides fascinating new complexities and, at worst, blinds its users to useful new paths of enquiry. |
|||||
|
|||||||
L'information, semble-t-il, est
répartie tout au long des chromosomes de façon
bien plus complexe qu'on ne le supposait au départ.
Les molécules d'ARN ne sont pas uniquement des
conduits passifs à travers s'écoule le message
des gènes mais des régulateurs actifs des
processus cellulaires. Parfois, l'ARN peut aussi transmettre
une information entre génération, ce qui est
d'habitude le privilège de l'ADN. |
"Quand nous avons commencé le projet ENCODE, j'avais une toute autre idée de ce qu'était le gène" dit le chercheur associé au projet Roderic Guigo du Centre de Régulation génomique de Barcelone. "Le degré de complexité que nous avons trouvé n'a pas été anticipé". Sous le feu des critiques |
Information, it seems, is parceled out along chromosomes in a much more complex way than was originally supposed. RNA molecules are not just passive conduits through which the gene's message flows into the world but active regulators of cellular processes. In some cases, RNA may even pass information across generations - normally the sole preserve of DNA. An eye-opening study last year raised the possibility that plants sometimes rewrite their DNA on the basis of RNA messages inherited from generations past1. A study on page 469 of this issue suggests that a comparable phenomenon might occur in mice, and by implication in other mammals2. If this type of phenomenon is indeed widespread, it "would have huge implications," says evolutionary geneticist Laurence Hurst at the University of Bath, UK. "All of that information seriously challenges our conventional definition of a gene," says molecular biologist Bing Ren at the University of California, San Diego. And the information challenge is about to get even tougher. Later this year, a glut of data will be released from the international Encyclopedia of DNA Elements (ENCODE) project. The pilot phase of ENCODE involves scrutinizing roughly 1% of the human genome in unprecedented detail; the aim is to find all the sequences that serve a useful purpose and explain what that purpose is. ` "When we started the ENCODE project I had a different view of what a gene was," says contributing researcher Roderic Guigo at the Center for Genomic Regulation in Barcelona. "The degree of complexity we've seen was not anticipated." Under fire |
|||||
|
|||||||
L'attaque actuelle du concept de
gène va beaucoup plus loin, soutenue pour une grande
part par des études qui montrent un rôle tout
à fait nouveau pour l'ARN. L'idée 'un
gène - une protéine' est sous le feu
des critiques de chercheurs qui extraient et analysent les
différents ARN messagers ou transcrits,
fabriqués par les génomes, notamment les
génomes de l'homme et de la souris. |
D'autres études, de deux
équipes, celle de Guigo
(4),
et celle du généticien Rotem Sorek
(5),
maintenant en Israël, à l'université de
Tel Aviv, ont donné une idée des raisons d'une
telle masse de transcrits. |
Today's assault on the
gene concept is more far reaching, fuelled largely by
studies that show the previously previously unimagined scope
of RNA. The one gene, one protein idea is coming under
particular assault from researchers who are comprehensively
extracting and analysing the RNA messages, or transcripts,
manufactured by genomes, including the human and mouse
genome. Researchers led by Thomas Gingeras at the company
Affymetrix in Santa Clara, California, for example, recently
studied all the transcripts from ten chromosomes across
eight human cell lines and worked out precisely where on the
chromosomes each of the transcripts came from3. The picture
these studies paint is one of mind-boggling complexity.
Instead of discrete genes dutifully mass-producing identical
RNA transcripts, a teeming mass of transcription converts
many segments of the genome into multiple RNA ribbons of
differing lengths. These ribbons can be generated from both
strands of DNA, rather than from just one as was
conventionally thought. Some of these transcripts come from
regions of DNA previously identified as holding
protein-coding genes. But many do not. "It's somewhat
revolutionary," says Gingeras's colleague Phillip Kapranov.
"We've come to the realization that the genome is full of
overlapping transcripts." Other studies, one by Guigo's
team4, and one by geneticist Rotem Sorek5, now at Tel Aviv
University, Israel, and his colleagues, have hinted at the
reasons behind the mass of transcription. The two teams
investigated occasional reports that transcription can start
at a DNA sequence associated with one protein and run
straight through into the gene for a completely different
protein, producing a fused transcript.
By delving into databases of
human RNA transcripts, Guigo's team estimate that 4-5% of
the DNA in regions conventionally recognized as genes is
transcribed in this way. Producing fused transcripts could
be one way for a cell to generate a greater variety of
proteins from a limited number of exons, the researchers
say. Many scientists are now starting to think that the
descriptions of proteins encoded in DNA know no borders -
that each sequence reaches into the next and beyond. This
idea will be one of the central points to emerge from the
ENCODE project when its results are published later this
year. Kapranov and others say that they have documented many
examples of transcripts in which protein-coding exons from
one part of the genome combine with exons from another part
that can be hundreds of thousands of bases away, with
several other 'genes' in between.
|
|||||
|
|||||||
|
|||||||
Ce continuum de gènes risque de déborder les limites d'un unique chromosome : l'année dernière Richard Flavell à l'École de Médecine de l'université de Yale dans le New Haven, Connecticut, a trouvé des gènes du système immunitaire humain qui semblent être contrôlés par des régions régulatrices d'un autre chromosome (6). "Les gènes discrets sont en train de disparaître" dit Guigo. "Nous avons un continuum de transcrits". Concept glissant |
Les régions qui correspondent
à de l'ARN non codant obtiendront peut-être le
statut de gène à défaut d'en avoir le
nom. "Je pense qu'il est temps de souffler un grand coup et
de faire un pas en arrière" dit John Mattick,
biologiste moléculaire de l'université de
Queensland à Brisbane, en Australie. "De nombreuses
informations du système sont négociées
à partir d'ARN". Bien que des fonctions aient
été identifiées pour plusieurs types de
molécules d'ARN, le point essentiel du débat
concerne l'étendu du domaine où les ARN jouent
un rôle. Il est aisément imaginable qu'il soit
plus facile pour la cellule de surtranscrire et d'ignorer
l'excédent plutôt que d'investir dans des
systèmes qui ne produisent que le nécessaire.
Une étude de l'année précédente,
cependant, suggère qu'au moins une partie de la masse
d'ARN sert à quelque chose d'utile. |
This continuum of genes might even spill over the boundaries of chromosomes: last year, Richard Flavell at Yale University School of Medicine in New Haven, Connecticut, documented human immunesystem genes that seem to be controlled by regulatory regions from another chromosome6. "Discrete genes are starting to vanish," Guigo says. "We have a continuum of transcripts." Slippery concept
Perhaps the regions that make non-coding RNA should also carry the status of genes, if not the name itself. "I think it's time for people to take a deep breath and step back," says molecular biologist John Mattick of the University of Queensland in Brisbane, Australia. "A lot of the information in the system is being transacted by RNA." Although functions have been identified for several RNA molecules, the crux of the debate now is the extent to which all the extra RNA plays a part. It is conceivable that it is easier to overtranscribe and ignore the rubbish than to invest in systems that produce only what is needed. A study from last year, however, hints that at least some of the mass of RNAs is doing something useful. Working at the Genomics Institute of the Novartis Research Foundation in San Diego, California, John Hogenesch and his coworkers systematically quenched the activity of more than 500 non-coding RNAs in human cells and found that eight were involved in cell signalling and growth9. But Hogenesh, and many other scientists, remain convinced that non-coding RNAs are much less important, functionally, than those that describe proteins; in the past, when scientists have searched for the genetic basis of a disease or other characteristic they have overwhelmingly found the underlying mutation to be in a protein-coding gene rather than in another region. |
|||||
|
|||||||
|
|||||||
"L'évidence aujourd'hui
incontestable est que la notion de gène codant est
révolue"dit Hogenesh. |
Chez la souris, des mutations dans le
gène Kit causent des tâches blanches sur
la queue et les pieds; si une souris a un gène
Kit normal et un gène Kit muté, elle
aura des tâches. La chose curieuse est que certains
des descendants de cette souris qui héritent deux
gènes Kit normaux, ont toujours une queue
blanche. Si ce fait est étrange, le travail publié l'année dernière (1) sur la plante gazonnante Arabidopsis par Robert Pruitt et ses collègues à l'université de Purdue, West Lafayette, Indiana, l'est bien davantage. Ici, le gène impliqué est apellé HOTHEAD. L'analyse de Pruitt et de ses collaborateurs montre que certaines plantes ne portent pas la version mutante du gène HOTHEAD que leur parents possédaient. Ces plantes ont remplacé une séquence d' ADN anormale avec une séquence normale portée par les générations précédentes. "C'est comme si, oh , cela change tout" ("It's like, whoa, this changes everything,"???) dit Pruitt. "Cela a définitivement changé ma manière de voir l'hérédité". |
"The preponderance of
evidence suggests that proteincoding genes will hold their
own when the day is over," Hogenesh says. In mice, mutations in the Kit gene cause white patches on the tail and feet; if a mouse has one normal Kit gene and one mutated one it will have the spots. The odd thing is that some of the offspring of such mice, who inherit two normal Kit genes, still have the white tail. The French group suggest that the mutant Kit gene manufactures abnormal RNA molecules, which accumulate in sperm and pass into the egg. These bits of RNA somehow silence the normal Kit gene in the next generation and subsequent ones, producing the spotted-tail effect. "We are convinced that it's a more general phenomenon," says co-author Franc¸ois Cuzin. If this is strange, the work reported last year1 on the cress plant Arabidopsis by Robert Pruitt and his colleagues at Purdue University in West Lafayette, Indiana, is even stranger. Here the gene involved is called HOTHEAD. Pruitt and his co-workers' analysis shows that some plants do not carry the mutant version of HOTHEAD that their parents possessed. These plants had replaced the abnormal DNA sequence with the regular code possessed by earlier generations. "It's like, whoa, this changes everything," Pruitt says. "It definitely changes my view of inheritance." |
|||||
|
|||||||
Pruitt travaille maintenant à expliquer comment une plante peut réaliser ce changement de séquence. Une solution serait qu'elle puisse porter une copie de sauvegarde de l'information génétique de ses grand-parents sous forme d'ARN transmis dans les graines en même temps que l'habituel ADN et qui serait ensuite utilisé comme modèle pour 'corriger' certains gènes. On imagine, dit Pruitt, que certains des mystérieux transcrits non codants, puissent être impliqués. "Je pense qu'il y a quelquechose qui est hérité en dehors de ce que nous considérons comme le génome conventionnel sous forme d'ADN". Changement de vues |
"Je trouve qu'il est parfois très
difficile de faire comprendre à un autre ce que l'on
veut dire lorsqu'il parle de gène parce que nous ne
partageons pas la même définition" dit William
Gelbert, généticien du développement
à l'université de Cambridge, Massachusets. |
Pruitt is now working to explain how the plant could perform such a feat. One idea is that they carry a back-up copy of their grandparents' genetic information encoded in RNA that is passed into seeds along with the regular DNA and is then used as a template to 'correct' certain genes. Conceivably, Pruitt says, some of the mystery non-coding transcripts could be responsible. "I think there's something being inherited outside what we think of as the conventional DNA genome." Changing views
"I find it sometimes very
difficult to tell what someone someone means when they talk
about genes because we don't share the same definition,"
says developmental geneticist William Gelbert of Harvard
University in Cambridge, Massachusetts.
Without a clear definition
of a gene, life is also difficult for bioinformaticians who
want to use computer programs to spot landmark sequences in
DNA that signal where one gene ends and the next begins. But
reaching a consensus over the definition is virtually
impossible, as Karen Eilbeck can attest. Eilbeck, who works
at the University of California in Berkeley, is a
coordinator of the Sequence Ontology consortium. |
|||||
|
|||||||
Plutôt que de se battre sans arrêt pour arriver à un consensus dans la définition - et s'opposer à coup d'arguments à toutes les étapes du processus - la plupart des généticiens adoptent aujourd'hui dans leur vocabulaire des termes moins ambigus tels que transcrits et exons. Lorsqu'il est employé, le mot 'gène' est fréquemment précédé par 'codant pour une protéine' ou un autre descripteur. "Nous avons à ajouter au moins un adjectif à chaque fois que nous utilisons ce nom" dit Francis Collins, directeur de l'Institut National de Recherche sur le Génome Humain au National Institut of Health à Bethseda, Maryland. |
Mais même si de nombreux généticiens se battent pour épingler l'insaisissable gène, c'est précisément sa nature ambigüe qui alimente en continu leur curiosité. "C'est de plus en plus fascinant" dit Young, de l'institut Whitehead. Cetaines choses, semble-t-il, ne peuvent correctement s'exprimer à l'aide d'un mot vulgaire de quatre-lettres. Helen Pearson est journaliste et travaille pour Nature à New York. |
Rather than striving to reach a single definition - and coming to blows in the process - most geneticists are instead incorporating less ambiguous words into their vocabulary such as transcripts and exons. When it is used, the word 'gene' is frequently preceded by 'proteincoding' or another descriptor. "We almost have to add an adjective every time we use that noun," says Francis Collins, director of the National Human Genome Research Institute at the National Institutes of Health in Bethesda, Maryland. But however much geneticists struggle to pin down the elusive gene, it is precisely its ambiguous nature that fuels their continued curiosity. "It's ever more fascinating," says Whitehead's Young. Some things, it seems, are not best portrayed by a crude four-letter word. ° Helen Pearson is a reporter working for Nature in New York. |
|||||
|
|||||||
|
|
||||||
Le philosophe des sciences, Karola Stotz,
à l'université d'Indiana à Bloomington
et Paul Griffiths, maintenant à l'université
de Queensland en Australie, s'efforcent de mesurer la
perplexité des biologistes en exercice au sujet des
gènes. |
Une autre protéine est
fabriquée à partir d'un unique transcrit
assemblé à partir de quatre ARN
différents, provenant eux-mêmes de 40.000
paires de bases de l'ADN. H.P. |
Science philosophers Karola Stotz, at Indiana University in Bloomington, and Paul Griffiths, now at the University of Queensland in Australia, are attempting to measure the extent of working biologists' bewilderment over genes. They collected together 14 weird and wonderful (but real) genetic arrangements and asked biologists to decide whether each represents one, or more than one, gene. One is a DNA segment that uses some of the same protein-coding sequences to manufacture two entirely different proteins with distinct functions. In another, one 'gene' is nestled within the non-protein coding intron of another. Another protein is assembled when four different RNA molecules, made from DNA scattered over 40,000 base pairs, are assembled into one transcript. Confused? So were the 500 biologists who completed the questionnaire. Stotz and Griffiths found that 60% are typically sure of one answer, and 40% are confident of another. Hardly any confess that they don't know. Stotz wants to examine whether scientists working in separate disciplines tend to view the situations in different lights. "It will be interesting to know if there is some order to the confusion," Stotz says. H.P. |
|||||
|